//--> BİLGİKAFEN

! Blog Yayınımız Açılmıştır.

Blog
Bugün»26 Kişi Buradaydı Bugün»32 Kez Tıklama Yapıldı
İp Adresiniz»3.12.76.168 Online:
Bu gönderiyi arkadaşlarınızla paylaşın


bilgikafem

Dunya nasil olustu

Dünya'nın nasıl oluştuğu konusunu irdelemeden önce , Dünya hakkında kısa bir paragrafa yer vermek istedik. Dünya , ya da diğer anlamları ile Yer veya Yeryüzü, Güneş Sistemi'nin Merkez Yıldız Güneş'e uzaklık açısından üçüncü sıradaki gezegeni konumundadır. Üzerinde yaşam barındırdığı bilinen tek gök cismidir. Katı ya da 'kaya' ağırlıklı yapısı nedeniyle üyesi bulunduğu yer benzeri gezegenler grubuna adını vermiştir. Bu gezegen grubunun kütle ve hacim açısından en büyük üyesidir. Büyüklükte, Güneş Sistemi'nin 8 gezegeni arasında gaz devlerinin büyük farkla arkasından gelerek beşinci sıraya yerleşir. Dünya'nın Tek doğal uydusu Ay'dır.

dunya-nasil-olustu

Dünya Nasıl Oluştu?

Yapılan araştırmalar sonucu gezegenimizin yaşı 4,467 milyar yıl olarak hesaplanmıştır.Geçen bu zaman dilimi, karmaşık bileşik yapılar ve içerdiği elementler göze alındığında, Güneş, Dünya ve diğer gezegenler dahil Güneş Sistemi'ndeki yapıları oluşturan moleküler bulutsunun kaynağı, ömrünü önceden tamamlamış bir genç tip yıldız'ın dağılmış artıklarının ve yıldızlar arası maddenin bir merkez etrafında dönerek gittikçe yoğunlaşmasıyla oluşmuştur. Merkezde yoğunlaşan çoğunlukla Hidrojen ve Helyum molekülleri yeni bir G2 türü yıldızı, yani Güneş'i oluşturmaya başlamış, çevre disklerdeki yoğunluklu bölgelerde ise gezegenler oluşmaya başlamıştır. Dünyamız ise Güneş'e 3. sırada yakınlıkta bulunan karasal bir iç gezegendir.

Oluşum diskleri süreci ve sonrasında bu karasal gezegenler ağır göktaşı çarpışmalarına sahne olmuştur. Göktaşları yapısında bulunan donmuş buzlar, silikat ve metal yapılar, karaların ve okyanuslarının oluşmasını sağlamış, merkezde yoğunlaşan ağır demir ve nikel elementleri ise gezegenimizin çekirdeğini oluşturmuştur. Ağır göktaşı bombardımanı, asteroid kuşağının Jüpiter'in güçlü çekim etkisi sonucu daha kararlı hale gelmesiyle gittikçe azalmıştır. Uygun koşullar oluştuğunda gelişmeye başlayan canlı hayat sonrasında özellikle bitkiler ve yaptıkları fotosentez ile atmosfer'imizin yapısal bileşimi önemli oranda değişmiş ve oksijen oranının yükselmesine neden olmuştur.

Dünya'nın Yaşı Kaç ?

Dünya'nın yaşı doğrudan doğruya kayaçların yaşıyla ölçülemez. Çünkü bilinen en yaşlı kayaçların bile bugün artık yeryüzünde var olmayan daha yaşlı kayaçlardan oluştuğunu biliyoruz. Bugüne kadar saptanabilen en yaşlı kayaçlar Grönland'ın batısında bulunmuştur ve 4,1 milyar yaşındadır. Demek oluyor ki Dünya'nın yaşı bundan daha fazladır.

Bugün Dünya'nın yaşını hesaplamak için elde edilen en iyi yöntem radyoaktif elementlerin yarılanmaları sonucu başka elementlere dönüşümleridir. Örneğin radyoaktif uranyum elementinin uranyum-238 ve uranyum-235 gibi iki ayrı tipte atomu (izotop) vardır. Bu atomların ikisi de çok yavaş bir süreçle kurşun atomlarına dönüşür. Öbür uranyum izotopundan biraz daha ağır olan uranyum-238'in dönüşümüyle daha hafif bir kurşun izotopu olan kurşun-206, uranyum-234'in dönüşümüyle de biraz daha ağır bir izotop olan kurşun-207 atomları oluşur. Uranyum-235'in kurşuna dönüşme hızı uranyum-238'in dönüşme hızından altı kat daha fazladır. Bu nedenler, incelenen bir kayaçtaki kurşun-206 ve kurşun-207 atomlarının oranı kayacın yaşına bağlı olarak değişir. En yaşlı olduğu düşünülen bir kurşun minerali ile bugün okyanuslarda oluşan kurşunun izotop yapısı arasındaki fark, ancak bu iki örneğin oluşumları arasında 4,55 milyar yıllık bir zaman dilimi olmasıyla açıklanabilir. Bu süre de Dünya'nın yaşı olarak kabul edilebilir. En eski kayaçların yaşını hesaplamak için radyoaktif rubidyum elementinin stronsiyuma dönüşme süreci de temel zaman ölçeği olarak alınabilir. Bunun sonucunda dünyamızın tahminen 5.5 milyar yıllık olduğu varsayılmaktadır.

uzaydan-dunya

Yerkabuğu 'nun bugünkü yapısı nasıl ?

Yerkabuğu mantoya oranla daha hafif maddelerden oluşmuştur ve bu iki katman arasındaki geçiş bölgesi nerdeyse kesin bir sınır çizer. Bu geçiş bölgesi, böyle bir sınırın varlığını ilk kez saptayan Yugoslav bilim adamı Andrije Mohoroviçiç'in (1857-1936) adıyla "Mohoroviçiç süreksizliği" kısaca "M-süreksizliği" ya da "moho" olarak anılır. Bu sınırın varlığını gösteren en önemli kanıt yerkabuğundaki deprem titreşimlerinin süreksizlik bölgesinden geçip mantoya ulaştığında bir denbire hızlanmasıdır.

Yer kabuğu okyanusların ve denizlerin altında uzandığı zaman "okyanus kabuğu" , kıtaları oluşturduğu zaman'da "kıta kabuğu" olarak adlandırılır. Okyanus kabuğunun kalınlığı 6–8 km arasındadır. Oysa ortalama kalınlığı 40 kilometreyi bulan kıta kabuğu yüksek sıradağların altında 60-70 kilometreye ulaşır.

Okyanus kabuğu üç katmandan oluşur. En alt katman, yerin derinlerindeki erimiş maddelerin (magmanın) katılaşmasıyla oluşan korkayaçlardır. Orta katman yanardağ lavrarından, üst katman ise temel olarak kum ve çamur gibi tortullardan oluşur. Okyanus kabuğu sürekli hareket halindedir. Bu nedenle kabukta okyanus sırtları boyunca çatlaklar oluşur ve bu çatlakların arasından yüzeye çıkan erişmiş maddelerin sertleşmesiyle okyanus kabuğuna yeni katmanlar eklenir. Bu yeni kabuk sertleşdikten sonra yılda 1 ile 10 cm kadar ilerliyerek yavaş yavaş okyanus sırtından iki yana doğru yayılır. Böylece okyanus sırtları suyun altında yüksek sırdağlar oluşturur.

Yerkabuğu çok sayıda eğri levhanın yan yana dizilmesiyle oluşan bir bütün olarak düşünebilir. Bu levhalar mantonun oldukça yumuşak üst katmanına oturduğu için sağa sola hareket edebilir. Okyanus sırtları, okyanus çukurları ve bazı uzun kırıklar yalnızca levhaların kenarlarında oluşur; bu kırıkların olduğu yerlerde de levhalar kayarak birbirinin üstüne binebilir. Levhalardan çoğunun üzerinde bu levhalarla birlikte hareket eden bir ya da birkaç kıta bulunur. Nitekim, bir zamanlar iki kıtaya ayıran okyanus kabuğunun çökmesiyle kıtalar bazı yerde birbirine iyice yaklaşmış, hatta üst üste binmiştir. Örneğin aralarındaki okyanus kabuğu cökmesi sonucunda Hindistan ve ile Asya kıtası çarpışmış ve iki karanın kenarları yükselerek Himalaya Dağları'nı oluşturmuştur. Büyük ve şiddetli depremlerin hemen hepsi bu levhaların kenarlarında, bir levhanın öbürünün altına girmesiyle olur. Aynı biçimde, en etkin yanardağlar da okyanus kabuğunun ya İzlanda'da olduğu gibi yükselerek sırta dönüştüğü ya da Andlar'da olduğu gibi çökerek kıtaların altına girdiği yerlerde bulunur.

Okyanus tabanının yanlara doğru yayılarak genişlemesi çok çarpıcı bir biçimde kanıtlanmıştır. Bu kanıtlamanın en önemli dayanak noktası da Dünya'nın magnetik alanının yukarıda anlatıldığı gibi zaman zaman yön değiştirmesidir. Yerkabuğunun derinliklerindeki erimiş magma yüzeye çıkarak kristalleşirken bazı mineral parçacıkları mıknatıslanır. Böylece her biri Dünya'nın magnetik kutuplarını gösteren küçük birer mıknatısa dönüşür. Jeologlar yaşları bilinen lav katmanlarının, yapılarındaki mıknatıslanmış parçacıklar bazen kuzey, bazen güney magnetik kutbuna yönelecek biçiminde yan yana yerleştiğini saptamışlardır. Bunun nedeni, bir katmandaki mıknatıslanmış parçacıkların kuzey ve güney kutuplarının Dünya'nın magnetik kutuplarına uygun olarak dizilmesi, sonra magnetik kutuplar yön değiştirdiğinde üstteki yeni katmanda bulunan parçacıkların bir önceki katmandakilere ters yönde yerleşmesidir. Kısacası okyanus kabuğu magnetik bantlı dev bir kayıt aleti, yani bir teyp gibi Dünya'nın magnetik alanındaki bütün değisikleri bir bir kaydetmiştir.

big-bang-theory

BIG BANG TEORİSİ YA DA BÜYÜK PATLAMA

Büyük Patlama ya da Big Bang, evrenin yaklaşık 13,7 milyar yıl önce aşırı yoğun ve sıcak bir noktadan meydana geldiğini savunan evrenin evrimi kuramı ve geniş şekilde kabul gören kozmolojik model. İlk kez 1920’lerde Rus kozmolog ve matematikçi Alexander Friedmann ve Belçikalı fizikçi papaz Georges Lemaître  tarafından ortaya atılan, evrenin bir başlangıcı olduğunu varsayan bu teori, çeşitli kanıtlarla desteklendiğinden bilim insanları arasında, özellikle fizikçiler arasında geniş ölçüde kabul görmüştür.

Teorinin temel fikri, halen genişlemeye devam eden evrenin geçmişteki belirli bir zamanda sıcak ve yoğun bir başlangıç durumundan itibaren genişlemiş olduğudur. Georges Lemaître’in önceleri “ilk atom hipotezi” olarak adlandırdığı bu varsayım günümüzde “büyük patlama teorisi” adıyla yerleşmiş durumdadır. Modelin iskeleti Einstein’ın genel görelilik kuramına dayanmakta olup, ilk Big Bang modeli Alexander Friedmann tarafından hazırlanmıştır. Model daha sonra George Gamow ve çalışma arkadaşları tarafından savunulmuş ve ilk nükleosentez olayı eklenmek suretiyle geliştirilerek sunulmuştur.

1929’da Edwin Hubble’ın uzak galaksilerdeki (galaksilerin ışığındaki) nispi kırmızıya kaymayı keşfinden sonra, bu gözlemi, çok uzak galaksilerin ve galaksi kümelerinin konumumuza oranla bir "görünür hız"a sahip olduklarını ortaya koyan bir kanıt olarak ele alındı. Bunlardan en yüksek "görünür hız"la hareket edenler en uzak olanlarıdır. Galaksi kümeleri arasındaki uzaklık gitgide artmakta olduğuna göre, bunların hepsinin geçmişte bir arada olmaları gerekmektedir. Big Bang modeline göre, evren genişlemeden önceki bu ilk durumundayken aşırı derecede yoğun ve sıcak bir halde bulunuyordu. Bu ilk hale benzer koşullarda üretilen "parçacık hızlandırıcı"larla yapılan deney sonuçları teoriyi doğrulamaktadır. Fakat bu hızlandırıcılar, şimdiye dek yalnızca laboratuvar ortamındaki yüksek enerji sistemlerinde denenebilmiştir. Evrenin genişlemesi olgusu bir yana bırakılırsa, Big Bang teorisinin, ilk genişleme anına ilişkin bir bulgu olmaksızın bu ilk hale herhangi bir kesin açıklama getirmesi mümkün değildir. Kozmozdaki hafif elementlerin günümüzde gözlemlediğimiz bolluğu, Big Bang teorisince kabul edilen ilk nükleosentez sonuçlarına uygun olarak, evrenin ilk hızlı genişleme ve soğuma dakikalarındaki nükleer süreçlerde hafif elementlerin oluşmuş olduğu tahminleriyle örtüşmektedir. ( Hidrojen ve helyumun evrendeki oranı, yapılan teorik hesaplamalara göre Big Bang'den arta kalması gereken hidrojen ve helyum oranıyla uyuşmaktadır. Evrenin bir başlangıcı olmasaydı, evrendeki hidrojenin tümüyle yanarak helyuma dönüşmüş olması gerekirdi.) Bu ilk dakikalarda, soğuyan evren bazı çekirdeklerin oluşmasına imkân sağlamış olmalıydı.(Belirli miktarlarda hidrojen, helyum ve lityum oluşmuştu.)

Big Bang terimi ilk kez İngiliz fizikçi Fred Hoyle tarafından 1949’da, “Eşyanın Tabiatı” adlı bir radyo (BBC) programındaki konuşması sırasında kullanılmıştır. Hoyle, hafif elementlerin bazı ağır elementleri nasıl meydana getirebilecekleri konusunda katkıları olmuş bir bilim insanıdır.

Bilim insanlarının çoğu, evrenin başlangıcında, bir Big Bang olayının cereyan etmiş olduğuna ancak 1964/1965’te, evrenin sıcak ve yoğun döneminin kanıtı olarak kabul edilen “kozmik mikrodalga arkaplan ışıması"nın ya da Georges Lemaître’in kullandığı terimlerle  Big Bang’ın soluk ışıklı yankısının keşfinden sonra ikna oldular.

Big Bang ya da Büyük Patlamanın Kronolojisi

Big Bang’ın kronolojik aşamaları tersten, yani günümüzden geçmişe doğru şöyle açıklanır:

Bugünkü evren (+ 13,8 milyar yıl)

Evrenimiz, şimdiki zamanda geçmişteki haline kıyasla son derece az yoğun (şimdilerde evrende metre küp başına birkaç atom düşmektedir) ve soğuk (2,73 kelvin, yani-270 °C) haldedir. Her ne kadar çok sıcak bazı astrofiziksel cisimler (yıldızlar) mevcutsa da evrenin şimdilerde maruz kaldığı ışınım (ışıma) çok zayıftır denebilir. Bu olguda yıldızların evrendeki sıklığının düşük olmasının payı büyüktür, yani evrenin herhangi bir noktasındaki bir yıldız ile kendisine en yakın yıldız arasındaki uzaklık son derece büyüktür. Astronomik gözlem bize yıldızlar ve galaksilerin evren tarihinin çok erken bir döneminde, Big Bang’ın ilk döneminden daha bir milyar yıl geçmeden önce mevcut olduklarını öğretmektedir.

Birleşme

Big Bang döneminden 300.000 yıl sonra, evren şimdiki haline kıyasla bin defa daha sıcak ve bir milyar misli daha yoğunken yıldızlar ve galaksiler henüz mevcut değildi.Bu büyük patlamadan 300,000 yıl sonraki, yani bundan aşağı yukarı 13,5 milyar yıl önceki evrenin ilk görülebilir halinin fotografı çekildi. 1992 yılında NASA’nın COBE uydusunun çektiği bu fotoğrafın astrofizikçilerin hesaplarına tam uyumlu olduğu gözüktü. İşte bu dönem, evrenin yoğunluğunun ışığın yayılabilmesine yeterli olacak düzeye düştüğü dönemdir. Daha öncesinde ışığın yayılabilmesine temel engel “serbest elektronlar”ın varlığıydı. Soğuması sırasında evrende bu "serbest elektronlar" atomları oluşturmak üzere atom çekirdeklerinde bir araya geldiler. Bu yüzden bu döneme "birleşme dönemi" denilir. Aynı zamanda ışığın yayılmaya başladığı dönem olduğundan, bu dönemden "madde ve ışımanın ayrılma dönemi" olarak da söz edilir. İşte kozmik arkaplan ışıması dediğimiz ışıma, bu dönemden itibaren günümüze dek süregelebilmiş ışıma ya da ışıklardır.NASA'nın WMAP uydusunun 2006 yılındaki verilerine göre Büyük Patlama'dan 380,000 yıl sonra evrenin daha net bir haritası çıkarıldı.Bu sonuçlara göre evrenin %12'sinin atomlardan,%15'inin fotonlardan,%10'unun nötronlardan ve %63'nün de karanlık madddeden oluştuğu belirlendi.Bu sonuçlar ışığında, Büyük Patlama'dan 380,000 yıl sonrasında evrenin %12'si atomlardan oluştuğuna göre ilk atomların oluşmaya başladığı ve dolayısıyla da serbest elektronların atom çekirdeği etrafına dizilmeleri yoluyla ışığın yayılabildiği zamanın başlangıcı Big Bang'den itibaren 300,000 yıl olmalıdır.380,000 yıl ancak "birleşme döneminin" tamamlandığı zaman olarak düşünülebilir.Ayrıca COBE uydusunun 1992 yılı verileriyle Big Bang'den 300,000 yıl sonraki halinin bir haritası çıkarılabildiğine göre,ışığın evrende serbestçe yayılabildiği zamanın başlangıcının 300,000 yıl olarak kabulünü gerektirir.Bu da serbest dolaşan elektronların ilk olarak bu zamanda atom çekirdeği etrafına dizilmeye başladığının ,diğer bir deyişle ilk atomların oluşmaya başladığının göstergesidir. Aksini kabul etmek, COBE uydusunun verilerinin geçersiz olduğunun kabulünü gerektirir.NASA kaynaklarında böyle bir durumdan bahsedilmez.Sonuç olarak,380,000 yıl süresi 300,000 yılın yerini almış değildir,WMAP uydusunun evrenin daha net bir haritasını çıkarmak adına gözlemlediği zamandaki durumunu yansıtır.

İlk nükleosentez (+ 3 dakika)

Big Bang’ın ilk döneminden 300.000 yıl sonra evren bir "elektronlar ve atom çekirdekleri plazması"ndan oluşmaktaydı.(Bu sürenin 380,000 yıl olarak olarak kabulü WMAP uydusunun 2006 yılı verileriyle tezat oluşturur. Zira, yukarıdaki paragrafta da belirtildiği gibi, NASA'nın açıkladığı sonuçlara göre evrenin Big Bang'dan 380,000 yıl sonrasında %12'sinin atomlara dönüştüğü belirlenmiştir.) Isı yeterince yüksek olduğunda atom çekirdekleri mevcut olamazlar; bu durumda proton, nötron ve elektron karışımından söz edilebilir. İlksel evrende hüküm süren koşullarda ısı ancak 0,1 MeV’un (Elektron Volt, yaklaşık bir milyar derece) altına indiğinde nükleonlar, atom çekirdekleri halinde kombine olabilirler. Bununla birlikte bu koşullarda lityumdan daha ağır atom çekirdeklerinin oluşması mümkün değildir. Dolayısıyla Big Bang başlangıcından yaklaşık bir saniye sonra başlayan ve yaklaşık üç dakika süren bu evrede oluşan atom çekirdekleri yalnızca hidrojen, helyum ve lityum çekirdekleridir. Dolayısıyla bu evre ya da dönem ilk yaratılmış veya ortaya çıkmış Gen anlamına gelen nükleosentez olarak adlandırılır. Günümüzde, modern kozmoloji araştırmacıları, sonuçların gözlemi ve anlaşılması bakımından, ilk nükleosentez konusuna artık tamamlanmış bir konu gözüyle bakmaktadır.

Elektron-pozitron çiftlerinin yok olması

Isı 0,1 MeV (Elektron Volt) olduğunda başlayan ilk nükleosentezden az önce 0,5 MeV’u (beş milyar derece) aşan evren ısısı elektronların kütle enerjisine denk olmuştur. Bu ısının ötesinde elektronlar ile fotonlar arasındaki etkileşimler kendiliğinden elektron-pozitron çiftleri yaratabilirler. Bu çiftler, kendiliğinden yok olabilirlerse de ısı 0,5 MeV eşiğini geçtikçe durmaksızın yeniden yaratılırlar. Isı bu eşiğin altına indikçe bu çiftlerin hemen hemen tümü baryogenezden doğan elektron fazlalıklarına yer vererek fotonlar halinde yok olurlar.

Nötrinoların ayrılması

Bu dönemden az önce, ısı elektron, foton ve nötrinoların çeşitli etkileşimleri için yeterli olan 1 MeV’un (on milyar derece) üzerindeydi. Bu ısıdan itibaren bu üç tür, “termik denge” halindedir. Evren soğuduğunda elektronlar ve fotonların etkileşimlerini sürdürmelerine karşın nötrinoların etkileşimleri biter. Bu dönem de nötrinoların ayrılma dönemidir. Dolayısıyla bildiğimiz “kozmik arkaplan ışıması”nın özelliklerine benzer özellikler gösteren bir “nötrinolar kozmik arkaplanı” mevcuttur. Dolaylı bir rol oynayan nötrinoların “ kozmik arkaplanı”nın varlığı ilk nükleosentezin sonuçları yoluyla, dolaylı olarak doğrulanmıştır. Nötrinoların kozmik arkaplanının doğrudan saptanması şimdiki teknolojik imkânlarla son derece güç olmakla birlikte, varlıkları konusunda herhangi bir tartışma olmamıştır.

Baryogenez

Atomaltı parçacıkları ve etkileşimlerini konu alan, çeşitli parçacıkların ve temel etkileşimlerin (temel kuvvetlerin) “elementer antiteler”in (nötron, proton, elektron) yalnızca farklı görünümleri olarak ele alındığı (örneğin elektromanyetizma ve zayıf nükleer güç, tek bir etkileşimin iki görünümü olarak tanımlanabilir) parçacık fiziği, deneylerle desteklenen genel fikir üzerine kuruludur. Daha genel olarak belirtmek gerekirse, fizik yasalarının ve evrenin, yüksek ısılarda daha “simetrik” bir hal aldıkları varsayılır. Mesela geçmişte evrende madde ve antimaddenin nicel eş olarak mevcut oldukları kabul edilir. Günümüzdeki gözlemler antimaddenin gözlemlenebilir evrenimizde hemen hemen mevcut olmadığını göstermektedir. Bu durumda maddenin varlığı belirli bir zamanda maddenin antimaddeye oranla hafif bir fazlalığından oluşmuştur (maddenin antimaddeye baskın gelmesi). Evrenin sonraki evrimi sırasında madde ve antimadde, arkalarında oluşan en hafif madde fazlasını bırakarak eşit niceliklerle yok oldular. Bu olağan madde baryon denilen parçacıklardan oluştuğundan, sözkonusu madde fazlalığının oluştuğu evreye baryogenez adı verilir. Bu evre ya da süreç hakkında çok az şey bilinmektedir. Örneğin bu olay sırasında oluşan ısı derecelenmesi Big Bang modellerine göre değişmektedir (bu, farklı Big Bang modelleri arasındaki farklardan biridir). Baryogenezin meydana gelmesi için gerekli koşullara Rus fizikçi Andréi Sakharov’un 1967’deki çalışmalarından ötürü "Sakharov koşulları" adı verilmiştir.

"Büyük birleşik" çağı

Giderek artan sayıdaki belirtiler, zayıf ve güçlü elektromanyetik kuvvetlerin tek bir etkileşimin (kuvvetin) farklı görünümlerinden ibaret oldukları fikrini vermektedir. Bu durum, artık genellikle, İngilizce’de kısaltma adıyla GUT olarak bilinen, “Büyük Birleşik Teori” (İng. Grand unification theory ya da Grand Unified theory) kapsamında bulunmaktadır. Bu etkileşim ya da kuvvetin 1016 GeV’un (1029derece) üzerindeki ısılarda tezahür ettiği sanılmaktadır. Şu halde muhtemelen evren GUT teorisinin uygulanma alanı bulduğu bir evre geçirmiş olmalıdır. Doğası halen bilinmemekle birlikte, bu evre, baryogenezin ve muhtemelen karanlık maddenin kökeninde yer almış olmalıydı.

buyuk-patlama

Kozmik şişme nedir ?

Evren çok kısa süren bir dönemde bir hayli büyüdü. Bir şişmenin neden olduğu bu fenomene, kozmik şişme denir.

Big Bang teorisi kozmolojiye yeni meseleler getirmişti. Örneğin evrenin homojen ve izotrop olduğunu önermiş, fakat niçin böyle olması gerektiğini açıklamamıştı. Oysa teorinin sade versiyonunda, evrende homojenliğe yol açan Big Bang'ın gerçekleşmesinde bir mekanizmadan ya da işleyişten söz edilmiyordu, böyle bir şey yoktu. Böylece şişme (ilk ani, hızlı genişleme) nedeni ya da gerekçesinin evrenin homojen ve izotrop olmasına yol açan bir süreç başlattığı varsayılıyordu.

"Kozmik şişme" kavramının mucidi, böyle bir süreci betimleyici bir senaryoyu ilk öneren kişi olan Alan Guth’tur. François Englert ve Alexei Starobinsky de aynı dönemde (1980) bu meselenin bazı sorunlu kısımları üzerinde çalışmalarda bulunmuş diğer isimler olarak bilinir. Guth daha sonra (1982’de), bazı çalışmalarda bulundu ki, bu çalışmalarında ortaya koyduğu sonuçlara göre, büyük astrofiziksel yapıların tohumlarını içeren kozmik şişme, evrenin homojen oluşunu açıklama imkânı sağlamakla kalmayıp, evrenin niçin homojenliğe aykırı bazı olgular içermesi gerektiğini de açıklama imkânı sağlıyordu.

Şişmenin evren tarihinin, Büyük Birleşik Çağı’na ve Planck Çağı’na komşu olan, son derece sıcak (10'14 ile 10'19 GeV arasındaki, yani 10'27ile10'32 derece arasındaki ısılarda) ve erken bir döneminde yer almış olması gerekir. Gerek Big Bang teorisinin ortaya koyduğu meselelerin hemen hemen tümünün şişme süreciyle açıklanabilmesi, gerekse bu tür meselelerin açıklanabilmesinde diğer senaryoların daha karışık olmalarına rağmen sonuç vermede yetersiz görülmesi, şişme senaryosuna kozmolojide daha ön planda yer verilmesini sağladı. Kozmik arkaplanın anizotropilerinin  ayrıntılı gözleminden itibaren, iyice emin olunduğundan, şişme modellerinin kanıtlarla pekiştirilmesine gerek kalmadığı anlaşıldı. Şişme senaryosunun gözlemlerle uyum içinde olması onun konuyla ilgili tüm meselelerde baş role yerleştirilmesini sağlamış bulunmaktadır.

Şişme evresi evrenin belli bir zaman içinde son derece hızlı bir şekilde genişlemesidir. Genişleme dolayısıyla yoğunluğu azalan bu evren, çok homojen bir enerji türüyle dolu haldeydi. Bu enerji o zaman çok hızlı olarak etkileşimde bulunmaya ve ısınmaya koyulacak partiküllere dönüştü. Şişmeyi sona erdiren bu iki evreye parçacıkların patlayıcı yaratılışı bakımından “ısınma-öncesi evre” ve parçacıkların termalizasyonu bakımından “ısınma evresi” adı verilir. Şişmenin genel işleyişi iyice anlaşılmış olmakla birlikte, ısınma-öncesi ve ısınma evrelerindeki işleyiş tam anlaşılamamış olup, halen çeşitli araştırmalara konu olmaktadır.

Planck Çağı — Kuantum Kozmolojisi

Şişme evresinin ötesinde (öncesinde), daha genel olarak söylemek gerekirse, Planck ısısı gibi sıcaklıklarda güncel fizik kuramlarının artık geçerli olmadığı bir sahaya girilir. Bu, genel görelilik kuramında bir düzeltmenin sözkonusu olacağı, kuantum mekaniği kavramlarının geçerli olduğu bir sahadır. Henüz ortaya konmamış olmakla birlikte, belki de halen gelişim halindeki sicim kuramından doğacak bir kuantum kütleçekimi kuramı, Planck Çağı denilen dönemdeki evrene ilişkin çeşitli spekülasyonlara yer verilmesini sağlayacaktır. Stephen Hawking gibi birçok yazar bu dönemlerdeki evreni tanımlayabilme denemelerine olanak sağlayacak çeşitli araştırma yolları önermişlerdir. Bu araştırma alanına günümüzde kuantum kozmolojisi adı verilmektedir.

Kozmoloji standart modeli

Evreni oluşturan unsurların en iyi Big-Bang modeli sayılan ΛCDM modeline göre oransal tablosu. NASA tarafından hazırlamış bu tablonun gösterdiği gibi, evrenin %95’i karanlık madde ve karanlık enerji türlerinden oluşmuştur.

"Kozmoloji standart modeli" 20.yy.’ın ilk yarısında önerilen Big Bang görüşünün mantıksal bir sonucudur. Adı parçacık fiziğinin standart modelinin adından örnekseme yoluyla oluşturulmuş “kozmoloji standart modeli” evren gözlemlerinin bütünlüğüyle uyuşan bir evren tanımı sunmaktadır.

Özellikle şu iki noktayı şart koşar:

    * Gözlemlenebilir evren, yoğun ve sıcak bir evreden (Big Bang) doğmuştur. Bu evre sırasındaki bir işleyiş (mekanizma) erişebildiğimiz (gözlemleyebildiğimiz) bölgenin homojen olmasını, fakat aynı zamanda bazı istisnalar göstermesini sağlamıştır. Önerilen başka işleyişler olsa da, bu, muhtemelen şişme tipli bir işleyiştir.

    * Güncel evren birçok madde türüyle doludur:

          o Her çeşit elektromanyetik ışımayı temsil edici parçacıklar olan fotonlar.

          o Nötrinolar.

          o Atomları oluşturan baryonik madde.

          o Karanlık madde denilen, laboratuvar ortamında üretilememişse deparçacık fiziğinde öngörülen, galaksilerin yapısından sorumlu olan, kendilerini oluşturan yıldızlar bütününden daha kütleli bir veya birkaç madde türü.

          o Karanlık enerji denilen, günümüzde gözlemlenen "evrenin genişlemesinin hızlanması"ndan sorumlu olan (ve muhtemelen kozmik şişme ile doğrudan ilgisi olmayan), alışılmamış özelliklere sahip bir enerji türü.

Artık astronomik gözlemlerin büyük bir kısmı bildiğimiz evreni tanımlarken bu vazgeçilmez temel taşlarından yararlanmaktadır. Kozmolojik araştırma esas olarak bu madde türlerini, özelliklerini ve ilksel evrenin hızlanmış genişleme senaryosunu tanımlamayı amaçlamıştır. "Kozmoloji standart modeli"nin üç temel taşı laboratuvar ortamında gözlemlenmemiş fiziksel fenomenlere başvurmayı gerekli kılmaktadır: Kozmik şişme, karanlık madde ve karanlık enerji. Bu temel taşları ya da bunlardan birini yok varsayan tatminkar hiçbir kozmolojik model yoktur.

big-bang-deneyi

PEKİ KIYAMET NASIL KOPACAK ? İŞTE BIG BANG TEORİSİNE GÖRE EVRENİN ÇÖKÜŞÜ

Büyük Patlama teorisine göre gelecek

Karanlık enerjinin varlığının anlaşılmasından önce, kozmologlar evrenin geleceği hakkında iki senaryo geliştirmişlerdi. Evrenin "kütle yoğunluğu" “kritik yoğunluk”tan (İng. critical density) büyük olduğu takdirde evren maksimum boyutuna ulaştıktan sonra çöküş sürecine girecekti. Daha yoğun ve daha sıcak olacak ve bu süreci “Büyük Çöküş” (İng.Big Crunch) denilen, başlangıçtaki haline benzer bir halle tamamlayacaktı. Bu senaryoya alternatif olarak, evrendeki yoğunluk "kritik yoğunluğa" eşit veya bunun altında olduğu takdirde genişleme yavaşlayacak, fakat asla durmayacaktı. Yıldızlararası gazlardaki yıldız oluşumu tüm galaksilerde duracak, yıldızlar ak cücelere, nötron yıldızlarına ve kara deliklere dönüşeceklerdi. Bunlar arasındaki çarpışmalar da yavaş yavaş kütle birikimlerinin oluşmasını, yani daha büyük kütleli cisimlerin oluşmasını ve giderek büyük kara delikler haline gelmeleri sonucunu doğuracaktı. Evrenin ortalama sıcaklığı sonuşmaz olarak "mutlak sıfır"a yaklaşacaktı (evrenin ısısal ölümü) Ayrıca proton kararsız kaldığı takdirde baryonik madde ardında yalnızca ışıma ve kara delikler bırakarak yok olacaktı. Sonunda kara delikler de "Hawking radyasyonu" yayarak buharlaşacaklardı (yok olacaklardı). Böylece evrenin entropisi hiçbir organize enerji türünün kendisini kurtaramayacağı “evrenin ısısal ölümü”  denilen bir noktaya tırmanacaktı.

Modern “hızlı genişleme” gözlemleri şunu göstermektedir ki, bugünkü “görülür evren” yavaş yavaş “olay ufku”muzun ötesine kayacak ve temas olanaklarımızın dışına çıkacaktır. Sonraki durum ya da nihai sonuç bilinmemektedir. En gelişmiş Big Bang modeli olan ΛCDM modeli, karanlık enerjiyi bir "kozmolojik sabite" biçimi olarak kabul eder. Bu teori ya da model yalnızca galaksiler gibi sınırlı çekimsel sistemlerin birlikte kalabileceklerini varsayar ki, ısısal ölümden onlar da kaçamayacaklardır. Karanlık enerjiye ilişkin, “fantom enerji teorileri” denilen başka açıklamalar ise sonunda galaksi kümelerinin, yıldızların, gezegenlerin, atomların vb.’nin ebedi genişlemeyle ayrılacaklarını ileri sürmektedir. Buna ( Big Rip ) adı verilmektedir.

 
 
 
Bugün 26 ziyaretçikişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol